Mark scheme - Transition Elements

Quest on	Answer/Indicative content	Mark s	Guidance
1	Refer to marking instructions on page 5 of mark scheme for guidance on marking this question. Level 3 (5-6 marks) All three tests are covered in detail, with at least six of \mathbf{B} to \mathbf{H} identified correctly and equations mostly correct. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) All three tests are covered with at least four of \mathbf{B} to \mathbf{H} identified correctly. Some attempt at writing equations, but with several omissions or incorrect formulae. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Only two tests covered with at least two of \mathbf{B} to \mathbf{H} identified correctly, and little attempt at writing equations. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	$\begin{gathered} 6 \\ (\mathrm{AO} \\ 3.3 \times \\ 3) \\ (\mathrm{AO} \\ 3.4 \times \\ 3) \end{gathered}$	Indicative scientific points may include: Identification of unknowns Can be identified within labelled equation. B is $\mathrm{FeSO}_{4} \mathrm{OR}$ Iron(II) sulfate - Test 1: Fe^{2+} present - Test 2: $\mathrm{SO}_{4}{ }^{2-}$ present \mathbf{D} is $\mathrm{Fe}(\mathrm{OH})_{2} \mathbf{O R}$ $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]$ OR iron(II) hydroxide G is BaSO_{4} OR barium sulfate C is CrCl_{3} OR chromium(III) chloride - Test 1: Cr^{3+} present - Test 3: C - present \mathbf{E} is $\mathrm{Cr}(\mathrm{OH})_{3} \mathbf{O R}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]$ OR chromium(III) hydroxide \mathbf{F} is $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ H is silver chloride OR AgC/ Equations D: $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow$ $\mathrm{Fe}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O} \mathrm{OR} \mathrm{Fe}^{2+}+2 \mathrm{OH}_{-}$ $\rightarrow \mathrm{Fe}(\mathrm{OH})_{2} \mathbf{O R}$ $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow$ $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{H}_{2} \mathrm{O}$ OR $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right) 6\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow$ $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{NH}_{4}{ }^{+} \mathrm{OR}$ $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}$ $+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NH}_{4}{ }^{+}$ E: $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right) 6\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow$ $\mathrm{Cr}(\mathrm{OH})_{3}+6 \mathrm{H}_{2} \mathrm{O} \mathrm{OR} \mathrm{Cr}^{3+}+3 \mathrm{OH}^{-}$ $\rightarrow \mathrm{Cr}(\mathrm{OH})_{3} \mathbf{O R}$ $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow$ $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]+3 \mathrm{H}_{2} \mathrm{O}$ OR $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{NH}_{3} \rightarrow$ $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]+3 \mathrm{NH}_{4}{ }^{+} \mathbf{O R}$ $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{NH}_{3} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}+$ $3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{NH}_{4}{ }^{+}$

5.3.1 Transition Elements

				$\begin{aligned} & \text { F: }\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{NH}_{3} \rightarrow \\ & {\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+}+6 \mathrm{H}_{2} \mathrm{O} \mathrm{OR}} \\ & \mathrm{Cr}(\mathrm{OH})_{3}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+ \\ & 3 \mathrm{OH} \\ & {[\mathrm{OR}} \\ & {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]+6 \mathrm{NH}_{3} \rightarrow} \\ & {\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{OH}^{-}} \\ & \mathbf{G}: \mathrm{Ba}^{2+}+\mathrm{SO}^{2-} \rightarrow \mathrm{BaSO}_{4} \\ & \mathrm{H}: \mathrm{Ag}^{+}+\mathrm{Cr} \rightarrow \mathrm{AgCl} \end{aligned}$
		Total	6	
2		Refer to marking instructions on page 5 of mark scheme for guidance on marking this question. Level 3 (5-6 marks) Comprehensive explanation of the terms, ligand and coordination number and ligand substitution AND 3D diagrams of suitable examples of 6 AND 4 coordinate complex ions with different shapes AND Ligand substitution illustrated with a balanced equation There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Explanation of the terms, ligand and coordination number and ligand substitution with some errors or omissions AND: Diagrams of suitable examples of 6 AND 4 coordinate complex ions with different shapes OR A 3D wedged diagram of a suitable example of 6 OR 4 coordination OR A diagram of a suitable example of 6 OR 4 coordination AND ligand substitution illustrated with an equation OR Ligand substitution illustrated with a balanced equation There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence Level 1 (1-2 marks) Explanation of some terms: ligand, coordination number and ligand substitution with some errors or omissions. AND A suitable example of a complex ion OR Ligand substitution illustrated with an equation with some errors There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	$\begin{gathered} 6 \\ (\mathrm{AO} \\ 1.1 \times \\ 4) \\ (\mathrm{AO} \\ 2.1 \times \\ 2) \end{gathered}$	Indicative scientific points may include: Terms - Ligand: Donates a lone pair to metal ion Forms dative covalent (coordinate) bond with metal ion - Coordination number: Number of coordinate bonds to metal ion. Could be implicit in annotated diagrams NOTE: For monodentate ligands, 'number of ligands' is the same as the number of coordination number - Ligand substitution: One ligand replacing another Suitable examples of complex ions with different shapes - Coordination no 6 Octahedral e.g. $\begin{aligned} & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},} \\ & {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}} \end{aligned}$ - Coordination no 4 Tetrahedral e.g. $\mathrm{CuCl}_{4}{ }^{2-}, \mathrm{CoCl}_{4}{ }^{2-}$ OR Square planar Pt complexes, e.g. $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$ Diagrams and equations - Diagrams of complex ions (may be 3D)

5.3.1 Transition Elements

5.3.1 Transition Elements

				Level 2 candidates usually gave definitions of ligand, coordination number and ligand substitution. There was usually a balanced equation for ligand substitution and one correct 3D diagram. A second diagram often had an unsuitable shape for the complex ion chosen (often CuCl/4 ${ }^{2-}$ shown as square planar). Level 1 candidates did produce definitions, but these were often incomplete. There was usually an attempt to show a 3D diagram or equation, but these often contained unsuitable examples. This question rewarded the candidates who had learnt their chemistry and the levels enabled the amount of knowledge and understanding to be assessed. The question discriminated well.
		Total	6	
3	i	($0.00200 \mathrm{~mol} \mathrm{dm}^{-3}$ solution gives) a large titre which leads to a small (percentage) error / uncertainty \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} \\ 3.4) \end{gathered}$	ALLOW ($0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ solution gives) a small titre which leads to a large (percentage) error / uncertainty Assume 'it' means dilute solution ALLOW $13.50 \mathrm{~cm}^{3}$ gives a lower percentage error than $1.35 \mathrm{~cm}^{3}$ Examiner's Comments Only a very small minority of candidates appreciated that a larger titre reduces percentage error in titre values. Most erroneously described a reading of $1.35 \mathrm{~cm}^{3}$ as being less accurate than a reading of $13.5(0) \mathrm{cm}^{3}$. The accuracy of these is equal in the same scaled apparatus.
	i	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{3 0 1} \mathbf{~ m g}$ award 5 marks $\begin{aligned} & n\left(\mathrm{MnO}_{4}^{-}\right)=\frac{13.50}{1000} \quad \times 0.00200=2.7(0) \times 10^{-5} \\ & (\mathrm{~mol}) \checkmark \end{aligned}$	$\begin{gathered} 5 \\ (\mathrm{AO} \\ 2.8 \\ \times 5) \end{gathered}$	ALLOW ECF throughout ALLOW working to 3SF minimum throughout Common errors $602(\mathrm{mg})($ not dividing by 2$)=4$

5.3.1 Transition Elements

		$\begin{aligned} & n\left(\mathrm{Fe}^{2+}\right)\left(\text { in. } 25.0 \mathrm{~cm}^{3}\right)=2.7(0) \times 10^{-5} \times 5=1.35 \times 10^{-4}(\mathrm{~mol}) \checkmark \\ & n\left(\mathrm{Fe}^{2+}\right)\left(\text { in } 250 \mathrm{~cm}^{3}\right)=1.35 \times 10^{-4} \times 10=1.35 \times 10^{-3} \checkmark \\ & \text { Mass } \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{FeO}_{14} \text { in } 2 \text { tablets } \\ & \quad=1.35 \times 10^{-3} \times 445.8=0.6018(\mathrm{~g}) \checkmark \end{aligned}$ Mass $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{FeO}_{14}$ in 1 tablet $=301(\mathrm{mg})$ AND to $3 \mathbf{S F}$,		marks 37.7 (using 55.8 instead of 445.8) = 4 marks Last mark involves dividing by two and converting g to mg . These steps may be seen earlier Examiner's Comments Many candidates coped well with this multi-step calculation. The common errors were: - determining the mass of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{FeO}_{14}$ in two tablets instead of just one tablet as required in the question - determining the mass of Fe in a tablet instead of the mass of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{FeO}_{14}$ - failing to convert from grams to milligrams
	$\begin{aligned} & \text { i } \\ & \text { i } \end{aligned}$	A: Mass $\mathrm{Fe}=$ $\frac{180 \times 55.8}{151.8}=66 \mathrm{mg}$ B: Mass $\mathrm{Fe}=$ $\frac{210 \times 55.8}{169.8}=69 \mathrm{mg}$ Iron supplement: B provides more Fe per tablet \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} \\ 3.1 \\ \times 1) \end{gathered}$	ALLOW correct working if iron supplement is not named ALLOW iron(II) fumarate or $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{FeO}_{4}$
		Total	7	
4		Coordinate bond mark O_{2} (coordinately or datively) bonds with $\mathrm{Fe}^{2+} / \mathrm{Fe}(\mathrm{II}) / \mathrm{Fe} / \mathrm{Iron} \checkmark$ Ligand substitution mark (When required) O_{2} is replaced by $\mathrm{H}_{2} \mathrm{O}$ OR CO_{2} $\mathrm{ORO} \mathrm{O}_{2}$ is replaced by CO OR $\mathrm{H}_{2} \mathrm{O} \mathbf{O R ~} \mathrm{CO}_{2}$ is replaced by $\mathrm{O}_{2} \checkmark$ Ligand strength mark CO forms strong(er) bonds (than O_{2}) \checkmark	3 (AO 1.1 $\times 2$) (AO	ALLOW names or symbols of ligands ALLOW $\mathrm{H}_{2} \mathrm{O} / \mathrm{CO} / \mathrm{CO}_{2}$ (coordinately or datively) bonds with $\mathrm{Fe}^{2+} / \mathrm{Fe}(\mathrm{II}) / \mathrm{Fe} / \mathrm{Iron}$ ALLOW oxygen donates electron pair to OR binds with $\mathrm{Fe}^{2+} / \mathrm{Fe}(\mathrm{II}) / \mathrm{Fe} / \mathrm{Iron}$ DO NOT ALLOW Fe ${ }^{3+}$ ALLOW other words for replaced

5.3.1 Transition Elements

			$\begin{array}{r} 2.1 \\ \times 1 \text {) } \end{array}$	ALLOW $K_{\text {stab }}$ for CO (much) higher (than for O_{2}) ALLOW CO bonds irreversibly OR CO is a strong(er) ligand IGNORE affinity Examiner's Comments The key chemistry that candidates needed to discuss in their response was as follows: - O_{2} molecules forming coordinate bonds with and Fe^{2+} ions in haemoglobin. - O_{2} molecules being replaced by another ligand (e.g. $\mathrm{H}_{2} \mathrm{O}$ or CO) - CO ligands forming very strong coordinate bonds The mark scheme allowed 'oxygen binding' but candidates did need to specify what the oxygen was binding to. Loose terminology, such as CO having a 'greater affinity' should be avoided.
		Total	3	
5	a i	$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}(\mathrm{aq}) \checkmark$	$\begin{gathered} 1 \\ \text { (AO } \\ 1.1) \end{gathered}$	IGNORE state symbols Examiner's Comments Most candidates knew the correct formula. There was some confusion with ammoniacal copper ions and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ was a frequently seen incorrect answer.
		$\mathrm{CrCl}_{3}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{NaCl}(\mathrm{aq})$ or $\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s}) \downarrow$ state symbols required	$\begin{gathered} 1 \\ (\mathrm{AO} \\ 2.8) \end{gathered}$	IGNORE square brackets around precipitate formulae ALLOW $\left\lvert\, \begin{aligned} & {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq})} \\ & \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \end{aligned}\right.$ ALLOW 'hybrid' equations, $\mathrm{Eg} \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow$ $\mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{Na}^{+}(\mathrm{aq})$ $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right) 6\right]^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow$ $\mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{b}^{6+}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow\right.$

5.3.1 Transition Elements

5.3.1 Transition Elements

				Candidates should avoid incorrect connectivity between the ligand and the central metal ion. Candidates should be taught which atom within the ligand supplies the lone pair to form the coordinate bond. In this case oxygen has lone pairs, not hydrogen as suggested by the candidate in the bonding involving the bottom left hand ligand.
	i	$\mathrm{CrO}_{4}{ }^{2-}$,	$\begin{gathered} 1 \\ (\mathrm{AO} \\ 3.1) \end{gathered}$	IGNORE compounds e.g. $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ Examiner's Comments Very few candidates correctly identified the $\mathrm{CrO}_{4}{ }^{2-}$ ion here. Candidates should be aware that oxidation of $\mathrm{Cr}(\mathrm{OH})_{3}$ produces $\mathrm{CrO}_{4}{ }^{2-}$ (which can then be acidified to produce $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$).
	v	orange \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} \\ 1.1) \end{gathered}$	Examiner's Comments Invariably, the answer given by candidates here was either orange or green, indicating some knowledge of the colours of chromium ions. Those who stated orange received credit
b		$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2} \checkmark$	$\begin{gathered} 1 \\ (\mathrm{AO} \\ 1.1) \end{gathered}$	ALLOW upper case D, etc. and subscripts, e.g. 3D ${ }_{2}$ If included, ALLOW 4s ${ }^{0}$ Examiner's Comments Many candidates did not realise that when transition metal ions are formed, the first electrons removed from atoms are the 4 s electrons and so wrote $2 s^{2} 2 p^{6}$ $3 s^{2} 3 p^{6} 3 d^{1} 4 s^{2}$.
	i	Explanation of colours VO^{2+} goes to V^{3+} (green) AND then V^{3+} goes to V^{2+} (violet) \checkmark	$\begin{gathered} 3 \\ \text { (AO } \\ 3.2 \end{gathered}$	

5.3.1 Transition Elements

			Explanation using E^{-}values (E° of) system $4\left(\mathrm{VO}^{2+} / \mathrm{V}^{3+}\right)$ is more positive / less negative than system 2 ($\mathrm{Fe}^{2+} / \mathrm{Fe}$) OR (E° of) system $3\left(\mathrm{~V}^{3+} / \mathrm{V}^{2+}\right.$, is more positive / less negative than system 2 $\left(\mathrm{Fe}^{2+} / \mathrm{Fe}\right) \checkmark$ Equilibrium shift related to E^{-}values More positive/less negative system 4 ($\mathrm{VO}^{2+} / \mathrm{V}^{3+}$) shifts right AND More positive/less negative system 3 $\left(\mathrm{V}^{3+} / \mathrm{V}^{2+}\right)$ shifts right	$\times 2)$ (AO $3.2 \times$ 1)	IGNORE 'lower/higher' ALLOW reverse argument System 2 more negative than system 4 etc $E=(+) 0.78 \mathrm{~V}$ for system $4+$ system 2 reaction OR $E=(+) 0.18 \mathrm{~V}$ for system $3+$ system 2 reaction For shifts right' ALLOW (VO^{2+}) is reduced OR gains electrons (maybe seen as an equation) AND 'For shifts right' ALLOW $\left(\mathrm{V}^{3+}\right)$ is reduced $\mathbf{O R}$ gains electrons (maybe seen as an equation) IGNORE Fe oxidised Examiner's Comments Most candidates did not state that the direction of reaction of redox equilibria is dependent on the relative negativity/positivity of the standard electrode potentials. Higher ability candidates described two reductions of the relevant vanadium ions to end up with V^{2+} ions.
		$\begin{aligned} & i \\ & i \\ & i \end{aligned}$	$\mathrm{Fe}+4 \mathrm{H}^{+}+2 \mathrm{VO}^{2+} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~V}^{3+}$	$\begin{gathered} 1 \\ (\mathrm{AO} \\ 2.8) \end{gathered}$	IGNORE state symbols ALLOW multiples ALLOW ' \rightleftharpoons ’
			Total	11	
6	a	i	A: $\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s}) \checkmark$ B: $\mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s}) \checkmark \checkmark$	$\begin{gathered} 2 \\ \mathrm{AO} 3 \\ 1 \times 2 \end{gathered}$	ALLOW Fe(OH) $)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ IGNORE state symbols Examiner's Comments Most candidates were given 1 or 2 marks for this part. The black precipitate $\mathbf{B}\left(\mathrm{Ag}_{2} \mathrm{~S}\right)$ was identified correctly more often the orange precipitate \mathbf{A}, which was often shown as $\mathrm{Fe}(\mathrm{OH})_{2}$ instead of $\mathrm{Fe}(\mathrm{OH})_{3}$ or $\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$. Significantly, identification of B

5.3.1 Transition Elements

			required interpretation of new information whereas A required knowledge of transition element chemistry.
	Student is incorrect AND No oxidation numbers change OR example, e,g, Fe stays as $+2 \checkmark$	$\begin{array}{\|c} 1 \\ \text { AO3. } \\ 2 \end{array}$	ALLOW no electron transfer Examiner's Comments Just over half the candidates identified that the student was incorrect, and that the reaction is not redox. Candidates were expected to provide some evidence to support their statement, in terms of no oxidation number changes. Some candidates claimed that the reaction was not redox because only sulfur changed oxidation number, suggesting a misunderstanding of redox.
	$2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+\mathrm{C} / 2 \rightarrow 2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+2 \mathrm{C} \vdash \checkmark$	$\begin{array}{\|c\|} 1 \\ \text { AOS. } \end{array}$	ALLOW multiples e.g. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+1 / 2 \mathrm{C} / 2 \rightarrow$ $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{C}+$ ALLOW $\begin{aligned} & 2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{C} / 2 \rightarrow \\ & 2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}+2 \mathrm{HCl} \end{aligned}$ OR $\begin{aligned} & 2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{Cl}_{2} \rightarrow \\ & 2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]^{2+}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ NOTE: equation MUST be balanced by charge and oxidation number IGNORE state symbols Examiner's Comments Candidates found this equation extremely difficult with only a small number of candidates writing a correct equation. The problem lies with balancing the oxidation numbers and charges. Many wrote an equation with a 1:1 ratio or 1:2 ratio for $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}: \mathrm{Cl}_{2}$. An equation balanced in oxidation number and charge required a $2: 1$ ratio. When writing equations for redox reactions, candidates are

5.3.1 Transition Elements

			recommended to check that oxidation changes and charges are balanced as well as atoms.
	$5 \mathrm{H}_{2} \mathrm{~S}+2 \mathrm{MnO}_{4}^{-}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{~S}+8 \mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$ 1st mark ALL Correct species (SIX) OR Equation containing Mn and S species correctly balanced i.e. $5 \mathrm{H}_{2} \mathrm{~S}+2 \mathrm{MnO}_{4}^{-}$ \qquad $\rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{~S}$ \qquad 2nd mark Complete correct balanced equation	$\begin{gathered} 2 \\ \mathrm{AO} 3 . \\ 1 \times 2 \end{gathered}$	ALLOW multiples, e.g. $\begin{aligned} & 2^{1} / 2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{MnO}_{4}^{-}+3 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+ \\ & 21 / 2 \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ ALLOW equation with S^{2-}, e.g. $\begin{aligned} & 5 \mathrm{~S}^{2-}+2 \mathrm{MnO}_{4}^{-}+16^{\mathrm{H}} \rightarrow 2 \mathrm{Mn}^{2+}+ \\ & 5 \mathrm{~S}+8 \mathrm{H}^{2} \mathrm{O} \end{aligned}$ IGNORE extra electrons for 1st mark Examiner's Comments Candidates needed to interpret the information in the flowchart and to use this as the basis for their redox equation. The clue that a yellow solid is a product proved to be very difficult to interpret as being sulfur. The equation then required $\mathrm{H}_{2} \mathrm{O}$ to be added as the other product. Candidates found this equation difficult and relatively few correct equations were seen. As with (iii), many equations were not balanced by oxidation number or charge. Some candidates omitted this part entirely.
b	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Reaches a comprehensive conclusion to determine the correct formulae of almost all of C, D, E, F, G AND $9 \mathrm{H}_{2} \mathbf{O}$ There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Reaches a sound conclusion to determine the correct formulae of at least half of C, D, E, F, G AND $9 \mathrm{H}_{2} \mathrm{O}$. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.	$\begin{gathered} 6 \\ \text { AO1. } \\ 2 \times 2 \\ \text { AO3. } \\ 1 \times 2 \\ \text { AO3. } \\ 2 \times 2 \end{gathered}$	Indicative scientific points may include: Formula of C, D, E, F and G - C: $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{FeN}_{3} \mathrm{O}_{9} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ - D: $\mathrm{FeN}_{3} \mathrm{O}_{9} \mathrm{OR} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ - $\mathrm{E}: \mathrm{Fe}_{2} \mathrm{O}_{3}$ - $\mathrm{F}: \mathrm{NO}_{2}$ - $\mathbf{G}: \mathrm{O}_{2}$ - $9 \mathrm{H}_{2} \mathrm{O}$ Examples of evidence $n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{\mathbf{0 . 4 8 6}}{18.0}=0.027(\mathrm{~mol})$

5.3.1 Transition Elements

Level 1 (1-2 marks)

Reaches a simple conclusion to determine the correct formulae of some of
C, D, E, F, G AND $\mathbf{9 H}_{2} \mathbf{O}$.

There is an attempt at a logical structure with a line of reasoning.
The information is in the most part relevant.

0 marks No response or no response worthy of credit.

5.3.1 Transition Elements

				Exemplar 6 is a Level 3 response. The candidate has first identified \mathbf{C} and \mathbf{D}, having first determined the 1:9 molar ratio of C: $\mathrm{H}_{2} \mathrm{O}$. The candidate then writes the correct equation for Stage 1, using NO_{3} for the nitrate ion. The candidate then identifies E, F and G using a methodical approach with clear working throughout. Finally, the candidate writes the correct equation for the reaction in Stage 2. This is an excellent Level 3 response, given 6/6 marks. Exemplar 6 .24ge1 $n=\frac{0.486}{18}=\frac{0.027 \text { ade }}{0.00300}$ $\begin{gathered} 0.300: 0.027 \\ 1: 9 \end{gathered}$ erpiricel phala. of mynasen cappend: $\mathrm{Fe}_{2} \mathrm{I}_{3} \mathrm{O}_{4}$ $C \Rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \times 9 \mathrm{H}_{2} \mathrm{O} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ $\left.\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}\right)_{3} \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+9 \mathrm{H}_{2}$ 茥tage 2 $\underset{0}{\mathrm{~F}\left(\mathrm{NO}_{3}\right)_{3}} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(t)+F+\mathrm{O}_{\mathrm{n}}$ $\mathrm{F}_{2} \mathrm{O}_{3} \quad \quad E=F_{2} \mathrm{O}_{3}$ $\xrightarrow{4} 481.6)^{159.6}$ Additional answer space if required. stage 3. $G n=\frac{54}{24000}=225 \times 10^{-3}$ $270-54=216$ $\begin{gathered} \Rightarrow \text { because it } \\ \text { a glamingop } \end{gathered}$ $n=\frac{216}{24000}=9 \times 10^{-3}$ $M r=\frac{M}{n}=\frac{0.44}{9 \times 10^{-3}}=46 \quad \underset{L_{32}}{N_{2}}$ $F=\mathrm{NO}_{2}$ srage 2 equetor $2 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}$
		Total	12	
7	i	Equation $\begin{array}{ll} & {\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightleftharpoons\left[\mathrm{CoCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}} \\ \text { OR } & {\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{HCl} \rightleftharpoons\left[\mathrm{CoCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}^{+} \downarrow} \end{array}$	1	ALLOW reverse equation: $\begin{aligned} & {\left[\mathrm{CoCl}_{4}\right]^{-}+6 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}} \\ & +4 \mathrm{Cl}^{-} \end{aligned}$ but take care for subsequent explanations IGNORE state symbols (even if wrong) For $\left[\mathrm{CoCl}_{4}\right]^{2-}$, ALLOW CoCl4 ${ }^{2-}$, $\left(\mathrm{CoCl}_{4}\right)^{2-}$ For other representations, contact TL Examiner's Comments

5.3.1 Transition Elements

			In this part, candidates needed to apply their knowledge and understanding of ligand substitution and equilibrium to a novel situation. The best equations used Cl^{-}ions to form $\mathrm{CoCl}_{4}{ }^{2-}$. Some candidates used HCl instead and then $\mathrm{H}+$ was often omitted in the equation. As with 2 b , candidates are recommended to check that their completed equations are balanced.
	Equilibrium shift equilibrium (shifts) to right at high temperature $/ 100^{\circ} \mathrm{C}$ OR equilibrium shifts to left at low temperature $/ 0^{\circ} \mathrm{C} \checkmark$ CARE: Direction of shift depends on direction of equilibrium equation from 2c(i). Either look back or see the equation copied at bottom of 2 c (ii) marking zone. Enthalpy change - Endothermic $\sqrt{ }$	2	Mark independently ALLOW suitable alternatives for 'to right' e.g. towards products OR in forward direction OR 'favours the right' ORA for 'to left' Temperature required but ALLOW' in ice for low temperature OR 'in boiling/hot water' for high temperature IGNORE shift to blue side or pink side \qquad \qquad Examiner's Comments Candidates were expected to determine the type of energy change by linking their equilibrium equation in $2 b$ (i) with the colour changes at different temperatures. Most candidates correctly concluded that the formation of a blue colour is endothermic. Many candidates did not explain this in terms of a shift in equilibrium position, considering bond breaking and bond making instead.
	Total	3	

5.3.1 Transition Elements

5.3.1 Transition Elements

		Total	3	
9	a	$\mathrm{Ni}:$ $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} 4 s^{2} \checkmark$ $\mathrm{Ni}^{2+}:$ $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8} \checkmark$	2	ALLOW 4s before 3d, ie $1 s 2^{2} s 2^{2} p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{8}$ ALLOW 1^{2} written after answer prompt (ie $1 \mathrm{~s}^{2}$ twice) ALLOW upper case D, etc and subscripts, e.g.4S23D8 ALLOW for Ni^{2+} \qquad .4s0 DO NOT ALLOW [Ar] as shorthand for $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ Look carefully at $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ - there may be a mistake Examiner's Comments Most candidates knew the electron configuration of an Ni atom but the number knowing the electron configuration of the Ni^{2+} ion was considerably fewer. The common error was the failure to remove the two 4 s electrons.
	b	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) All three reactions are covered in detail with $\mathbf{C}, \mathbf{D}, \mathbf{E}$ and \mathbf{F} identified with clear explanations. There is a well-developed line of reasoning which is clear and logically structured with clear chemical communication and few omissions. The information presented is relevant and substantiated. Level 2 (3-4 marks) All three reactions are covered but explanations may be incomplete OR Two reactions are explained in detail. There is an attempt at a logical structure with a line of reasoning. The information is relevant e.g. formulae may contain missing brackets or numbers and supported by some evidence. Level 1 (1-2 marks) Make two simple explanations from any one reaction. OR	6	Indicative scientific points may include: REACTION 1 (CuSO ${ }_{4} / \mathrm{NH}_{3}$) Product $\mathrm{C}:\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ Equation $\begin{aligned} & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{NH}_{3} \rightarrow} \\ & {\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}} \end{aligned}$ Structure of trans stereoisomer Correct connectivity

5.3.1 Transition Elements

Makes one simple explanation from each of two reactions

There is an attempt at a logical structure with a line of reasoning The information is in the most part relevant.

0 marks No response worthy of credit.

REACTION $2\left(\mathrm{Cu}_{2} \mathrm{O}_{2} \mathrm{H}_{2} \mathrm{SO}_{4}\right)$
Products

D : $\mathrm{CuSO}_{4} \mathrm{OR}\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
E: Cu

Equation

```
Cu2O+ H2SO4 }->\mp@subsup{\textrm{CuSO}}{4}{+
Cu+ H2O
```


Oxidation numbers

$$
\mathrm{Cu}(+1) \rightarrow \mathrm{Cu}(+2)+\mathrm{Cu}(0)
$$

REACTION 3 (CuO/HNO 3)

Equation

Molar ratios

$$
\begin{aligned}
& \mathrm{Cu}: \mathrm{H}: \mathrm{N}: \mathrm{O} \\
& =\frac{26.29}{63.5}: \frac{2.49}{1.0}: \frac{11.59}{14.0}: \frac{59.63}{16.0}
\end{aligned}
$$

Formula of F

$\mathrm{CuH}_{6} \mathrm{~N}_{2} \mathrm{O}_{9}$
F: $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)^{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{OR}$
$\left.\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right)$

Further guidance on use of wedges

Must contain 2 'out wedges',
. 2 'in wedges' and 2 lines in

- plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge':
For bond into paper,
- ALLOW:
$\because \prime \prime \prime \prime \prime \prime \prime, ~ \ddots, ~ \ddots!\prime \prime \prime \prime \prime \prime \prime \prime, \ldots$,
ALLOW following geometry:
-

Examiner's Comments

Many candidates had a stab at identifying C-F but neglected to include equations for the three reactions described or to show

5.3.1 Transition Elements

5.3.1 Transition Elements

		Total	8	
	a	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) A comprehensive conclusion using all data to obtain correct formulae for A, B, C and D AND optical isomers shown There is a well-developed line of reasoning which is clear and logically structured with use of 3D structures for both optical isomers of C, use of wedges and bonding to N. The information presented is relevant and substantiated.	6	Indicative scientific points may include: 1. Formula of anhydrous complex B $\mathrm{NiC}_{6} \mathrm{~N}_{6} \mathrm{H}_{24} \mathrm{C}_{2}$ $\begin{aligned} & \text { Example of working } \\ & \mathrm{Ni}: \mathrm{C}_{\mathrm{C}}: \mathrm{N}^{2}: \mathrm{H}: \\ & =\frac{18.95}{58.7}: \frac{23.25}{12.0}: \frac{27.12}{14.0}: \frac{7.75}{1.00}: \frac{2}{3} \end{aligned}$ There may be other methods

5.3.1 Transition Elements

Level 2 (3-4 marks)

Reaches a sound conclusion for the formula of B

AND

obtains the correct formula of the hydrated complex A
OR a 3D diagram of one optical isomer of cation \mathbf{C}

There is a line of reasoning and supported by some evidence. Calculations are clear and can be followed to obtain correct conclusions. 3D diagram, if present, should use wedges mostly correctly.
Formula of \boldsymbol{A} to show water separately or formula of \boldsymbol{C} to show ligands separately, as appropriate.

Level 1 (1-2 marks)

Reaches a simple conclusion to obtain the correct formula of anhydrous complex B OR shows that A contains $2 \mathrm{H}_{2} \mathrm{O}$

There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. Attempts more than one part of the problem.

0 marks No response or no response worthy of credit.

2. Formula of hydrated

 complex A$\mathrm{NiC}_{6} \mathrm{~N}_{6} \mathrm{H}_{24} \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ OR
$\mathrm{NiC}_{6} \mathrm{~N}_{6} \mathrm{H}_{24} \mathrm{Cl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$
Example of working
n (anhydrous salt) $=\frac{7.433}{309.7}=0.02400$
$n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{0.864}{18.0}=0.04800(\mathrm{~mol}) \downarrow$

There may be other methods

3. Formula of cation \mathbf{C}

$\left[\mathrm{NiC}_{6} \mathrm{~N}_{6} \mathrm{H}_{24}\right]^{2+}$ OR
$\left.\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right)\right]^{2+}$
(could be in structures
2+ charge can be shown on cation OR optical isomers (i.e. seen somewhere)

- Bidentate ligand D
$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ or displayed so that structure is clearly unambiguous.
- Optical isomers

Accuracy of structures

Bonding shown from Ni to N of $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$

ALLOW $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right)_{2}$ for ligand For $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ in optical isomers,

ALLOW C-C without Hs and $\overbrace{\mathrm{NH}_{2}} \quad \mathrm{NH}_{2}$

5.3.1 Transition Elements

5.3.1 Transition Elements

				and ions was not done well. Most candidates knew the yellow solution to be $\mathrm{CuCl} / 4^{2-}$ and the majority suggested the brown solution was I_{2}. The formula of the blue precipitate $\mathrm{Cu}(\mathrm{OH})_{2}$ was less well known and only a small minority were able to identify the deep blue solution and white solid as $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ and $\mathrm{Cu} /$ respectively.
	i	Reaction 1: ligand substitution \checkmark Reaction 2: redox \checkmark	2	ALLOW ligand exchange ALLOW reduction AND oxidation ALLOW precipitation Examiner's Comments Ligand substitution was well known but redox was less frequently seen. However, as reaction 2 formed a precipitate, precipitation was accepted as an alternative answer.
		Total	13	
1	i		1	ALLOW brackets around structure with negative charge outside, i.e. ALLOW ring (Kekulé structure) Examiner's Comment: Most candidates identified the skeleton of the ligand. However, this was often drawn without the minus sign on the COO^{-}or with an additional minus sign on the nitrogen.
	$\begin{aligned} & \text { i } \\ & \text { i } \end{aligned}$	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=1.61 \times 10^{-3}$ award 2 marks $\begin{aligned} & M=418(.0)\left(\mathrm{g} \mathrm{~mol}^{-1}\right) \mathrm{OR} n(\mathrm{Cr})=3.85 \\ & \times 10^{-6}(\mathrm{~mol}) \checkmark \\ & \text { Mass }=3.85 \times 10^{-6} \times 418.0=1.61 \\ & \times 10^{-3} \mathrm{~g} \checkmark \end{aligned}$	2	Note: $\frac{200 \times 10^{-6}}{52.0}=3.85 \times 10^{-6}$ (at least 3 SF) ALLOW ECF from incorrect M OR $n(\mathrm{Cr})$

5.3.1 Transition Elements

				ALLOW 3 SF up to calculator value correctly rounded For 5a(i)-(iv) IGNORE poor connectivity to SH groups Given in question Examiner's Comment: Most candidates calculated the amount of chromium correctly as $3.85 \times 10^{-6} \mathrm{~mol}$. The second mark required this value to be multiplied by the molar mass of the complex. Success here was dependent on obtaining the correct molar mass of $418 \mathrm{~g} \mathrm{~mol}^{-1}$. Candidates scored better here than in 4(c)(i). Answer: $1.61 \times 10^{-3} \mathrm{~g}$
		Total	3	
1	i	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} \checkmark$	1	
	i	- Electrons for each S atom must be shown differently, e.g. • for left-hand S and \times for right hand S - Two 'extra' electrons shown with different symbol (as a square in diagram above) with one square on each S atom. MARKING 1 covalent bond between two S atoms with \cdot AND $\times \checkmark$ Rest of structure correct including 2 extra electrons \checkmark	2	IGNORE any outer electrons shown on Fe Electrons donated by Fe must be different. ALLOW dative covalent bond for covalent bond using two dots OR 2 crosses for 1 st mark 2nd mark will then have the 2 extra electrons on the S atom that has donated the electrons for the dative covalent bond.

5.3.1 Transition Elements

			Total	3	
1 3	a		$\begin{aligned} & n\left(\mathrm{H}_{2} \mathrm{O}\right)=27.55 / 18.0=1.5306(\mathrm{~mol}) \checkmark \\ & n\left(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2}\right)=72.45 / 284.0=0.2551(\mathrm{~mol}) \checkmark \end{aligned}$ whole number ratio of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right) 2$: $\mathrm{H}_{2} \mathrm{O}$ $=0.2551: 1.5306=1: 6$ OR $x=6 \checkmark$	3	If there is an alternative answer, check to see if there is any ECF credit possible ALLOW calculator value or rounding to two significant figures or more but IGNORE 'trailing zeroes' if wrong M produces such numbers throughout. ALLOW ECF If no working, ALLOW 1 mark for $x=6$.
	b	i	To neutralise acidic soil \checkmark	1	
			Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Describes practical details of tests and observations that allows all four ions to be identified AND Attempts associated equations, with most correct. There is a well-developed line of reasoning and the method is clear and logically structured. The information presented is relevant and substantiated by observations from the tests described and practical details. Level 2 (3-4 marks) Describes most practical details of tests including the observations that allows most ions to be identified AND Attempts associated equations, with some correct. There is a line of reasoning presented and the method has some structure. The information presented is in the most-part relevant and supported by some evidence of observations from the tests described but practical details may be absent. Level 1 (1-2 marks) Describes some of the practical details of tests and observations would only allow some ions to be identified. OR Attempts associated equations, with some correct. The information is basic and the method lacks structure. The information is supported by limited evidence of the observations, the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.	6	Indicative scientific points may include Practical details: - Sample stirred with water and mixture filtered. - $\mathrm{SO}_{4}{ }^{2-}, \mathrm{Fe}^{2+}, \mathrm{NH}_{4}{ }^{+}$tests on filtrate. - $\mathrm{CO}_{3}{ }^{2-}$ test on residue or garden product Tests and associated equations: $\mathrm{CO}_{3}{ }^{2-}$ test: Test: Add nitric acid. Observation:effervescence. Equation: $\mathrm{CaCO}_{3}+2 \mathrm{H}^{+} \rightarrow$ $\mathrm{Ca}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ ALLOW $\mathrm{CO}_{3}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{CO}_{2}$ $+\mathrm{H}_{2} \mathrm{O}$ OR overall equation of CaCO_{3} and an acid. $\mathrm{SO}_{4}{ }^{2-}$ test: Add $\mathrm{BaCl} 2(\mathrm{aq}) / \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) / \mathrm{Ba}^{2+}(\mathrm{aq})$. Observation: white precipitate. Equation: $\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow$ BaSO_{4} Fe^{2+} test: Test: Add $\mathrm{NaOH}(\mathrm{aq})$ Observation: green precipitate

5.3.1 Transition Elements

				```Equation: \(\mathrm{Fe}^{2+}+2 \mathrm{OH}-\rightarrow\) \(\mathrm{Fe}(\mathrm{OH})_{2}\) \(\mathrm{NH}_{4}{ }^{+}\)test: Test: Add \(\mathrm{NaOH}(\mathrm{aq})\) and warm Observation: gas turns red litmus indicator blue Equation: \(\mathrm{NH}_{4}{ }^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{NH}_{3}+\) \(\mathrm{H}_{2} \mathrm{O}\)```
	c i	Equation: $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$   State symbols required   Observation: Blue precipitate $\checkmark$	2	$\begin{aligned} & \mathrm{ALLOW}\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathrm{aq})+ \\ & 2 \mathrm{OH}-(\mathrm{aq}) \rightarrow \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}(\mathrm{~s})+ \\ & 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \end{aligned}$   ALLOW blue solid
	$\begin{aligned} & i \\ & i \end{aligned}$	Coordinate/dative covalent bonds between protein and $\mathrm{Cu}^{2+} / \mathrm{Cu} \checkmark$   N atoms $\mathbf{O R} \mathrm{O}$ atoms in protein donate electron pairs $\checkmark$	2	
		Total	14	
1 4	i	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+6 \mathrm{H}^{2} \mathrm{O} \checkmark$   ligand substitution $\checkmark$	2	ALLOW ligand exchange
	i	Bonds must be to N of $\mathrm{NH}_{3}$ ligands	2	IGNORE charges (anywhere) and labels (even if wrong)   Square brackets NOT required   Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge':   For bond into paper, ALLOW:   ALLOW following geometry throughout:
	i	Empirical formula of complex $D$ $\begin{gathered} \text { Co : N }: ~=\mathrm{H}: \mathrm{Cl} \\ \frac{22.03}{58.9}: \frac{31.41}{14.0}: \frac{6.73}{1.00}: \frac{39.83}{35.5} \end{gathered}$   OR $0.374: 2.24: 6.73: 1.12 \checkmark$	4	

### 5.3.1 Transition Elements

		$\begin{aligned} & =1: 6: 18: 3 \\ & =\mathrm{CoN}_{6} \mathrm{H}_{18} \mathrm{C}_{3} \checkmark \end{aligned}$   complex ion C $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} \checkmark$   complex D $\quad\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}\left[\mathrm{Cl}^{-}\right]_{3} \checkmark$		Correct empirical formula subsumes previous mark   ALLOW $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} 3 \mathrm{Cl}^{-}$
	i	Half equations $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+\mathrm{e}^{-} \checkmark$ $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{OH}^{-} \checkmark$   Overall equation $2\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+2 \mathrm{OH}^{-} \checkmark$	1	ALLOW multiples throughout $\begin{aligned} & \text { ALLOW } \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \\ & 2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$   ALLOW $2\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+} \rightarrow 2[\mathrm{Co}(\mathrm{~N}$
		Total	11	
$\begin{aligned} & 1 \\ & 5 \end{aligned}$	i	$3 \mathrm{MnO}_{4}{ }^{2-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW 1 in front of $\mathrm{MnO}_{2}$
	i	In acidic conditions   (Concentration of) $\mathrm{H}^{+}$increases   AND   equilibrium (position) shifts to the right to reduce concentration of $\mathrm{H}^{+} /$remove $\mathrm{H}^{+} \checkmark$   In alkaline conditions   $\mathrm{OH}^{-}$reacts with $\mathrm{H}^{+}$   AND   equilibrium (position) shifts to the left to increase concentration of $\mathrm{H}^{+} /$add $\mathrm{H}^{+} \checkmark$	2	ALLOW $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
		Total	3	
$6$	i	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} \checkmark$   Look carefully at $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ - there may be a mistake	1	ALLOW $4 s^{0}$ before or after 3d, i.e. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{0} 3 d^{6}$ DO NOT ALLOW [Ar] as shorthand for $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$   ALLOW upper case $D$, etc and subscripts, e.g. ......3D 10

### 5.3.1 Transition Elements

				IGNORE an extra $1 \mathrm{~s}^{2}$ after prompt on answer line
	$\begin{aligned} & i \\ & i \end{aligned}$		4	Check correct 1- charge   ALLOW brackets,   e.g. $\left[\mathrm{FeCl}_{4}\right]^{-}$   For $\mathrm{I}^{-}$,   ALLOW SO2,$\left(\mathrm{H}^{+}\right) / \mathrm{Zn}$   For $\mathrm{MnO}_{4}{ }^{-}$,   ALLOW $\mathrm{H}_{2} \mathrm{O}_{2},\left(\mathrm{H}^{+}\right) / \mathrm{Cr}_{2} \mathrm{O}^{2-}$,   $\mathrm{Cl}_{2}$   For $\mathrm{Fe}(\mathrm{OH})_{2} \quad$ ALLOW $\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$   For colour, ALLOW any colour that   describes green
		Total	5	
7	i	IGNORE any charges shown within complexes (treat as rough working)   Complex ion $\mathrm{C}:\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \checkmark$   Solid D: $\mathrm{Ni}(\mathrm{OH})_{2} \checkmark$   Complex ion $\mathrm{E}:\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \checkmark$	3	ALLOW +2 and -2 for charges   Square brackets required   ALLOW Ni( $\left.\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ and $(\mathrm{OH})_{2}$ in any order IGNORE any square brackets   Square brackets required   TAKE CARE for round brackets within complex ion, i.e. $\left(\mathrm{H}_{2} \mathrm{O}\right)$, (OH) and (CN)   Examiner's Comments   The majority of candidates obtained all three marks. Where marks were lost, it was often for

### 5.3.1 Transition Elements

			missing or incorrect charges (e.g. $\left.\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2+}\right)$, and poor use of brackets (e.g. $\mathrm{Ni}\left(\mathrm{OH}_{2}\right)$ and $\left.[\mathrm{NiCN} 4]^{2+}\right)$. $\mathrm{Ni}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ was often seen and was credited.
	Mark independently of 7(a)(i)   ALLOW +2 and -2 for charges   IGNORE any charges shown within complexes (treat as rough working) $\mathrm{Ni}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Ni}(\mathrm{OH})_{2} \checkmark$   Type of reaction: precipitation $\checkmark$ INDEPENDENT of equation $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{CN}^{-} \rightarrow\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \checkmark$   Type of reaction: ligand substitution $\checkmark$ INDEPENDENT of equation	4	For equations: IGNORE state symbol (even if wrong) Square brackets not required for $\mathrm{Ni}(\mathrm{OH})_{2}$   ALLOW $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow$ $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]+2 \mathrm{H}_{2} \mathrm{O}$   ALLOW $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow$ $\mathrm{Ni}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}$   ALLOW NiSO4 $(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$   $\rightarrow \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$   ALLOW NiSO 4 (aq) $+2 \mathrm{KOH}(\mathrm{aq})$ $\rightarrow \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$   ALLOW acid / base OR neutralisation OR deprotonation   ONLY IF $\left[\mathrm{Ni}_{( }\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ AND   $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]$ used   ALLOW precipitate   ALLOW $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{KCN} \rightarrow$ $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{~K}^{+}$   LOOK at formulae for E from 7(a)(i) (copied at bottom) ALLOW ECF in 7aii Equation for no round brackets around CN, i.e. $\left[\mathrm{NiCN}_{4}\right]^{2-}$ in $7 \mathrm{a}(\mathbf{i})$   This is the only ECF allowed from 7ai structures.   ALLOW ligand exchange   Examiner's Comments   Provided that correct formulae had been obtained in (a)(i), correct equations often followed, although marks were again lost by careless uses of charge and brackets, and unbalanced equations. The types of reaction were usually correct.
	Total	7	

### 5.3.1 Transition Elements



### 5.3.1 Transition Elements

				This equation proved to be much more difficult than in $\mathbf{8 ( b )}$, with only the best candidates producing a correctly balanced equation. As with 4(c) and 7(b)(iii), equations were often unbalanced in terms of charge and oxidation number.
	d	Starch $\checkmark$   Blue / black to colourless / white $\checkmark$   MARK INDEPENDENTLY	2	IGNORE 'brown' in composite colour with blue or black, i.e. ALLOW blue / brown to colourless ALLOW black / brown to colourless   DO NOT ALLOW just 'it turns colourless / is decoloured' Initial colour required   IGNORE clear for colourless   Examiner's Comments   Most candidates seemed unaware that starch is used to identify the end point in iodinethiosulfate titrations. Even when starch was given, the colour change was often incorrect. Random responses were seen to this part, e.g. methyl orange, phenolphthalein, potassium manganate and sodium thiosulfate.
	e	WORKING REQUIRED   Correct answer: $\mathrm{x}=4$ required evidence of working $n\left(\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}\right) \mathrm{OR} n\left(\mathrm{Cu}^{2+}\right)=\frac{0.0420 \times 23.5}{1000}=9.87 \times 10^{-4}(\mathrm{~mol})$   In $250.0 \mathrm{~cm}^{3}$ solution, $n\left(\mathrm{Cu}^{2+}\right)=9.87 \times 10^{-3}(\mathrm{~mol}) \checkmark$ $M\left(\mathrm{Cu}(\mathrm{HCOO})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right)=\frac{2.226}{9.87 \times 10^{-3}}=225.5\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)^{\checkmark}$   $\boldsymbol{x}\left(\mathrm{H}_{2} \mathrm{O}\right)$ has mass of $225.5-\mathrm{M}\left(\mathrm{Cu}(\mathrm{HCOO})_{2}\right)$   $=225.5-153.5$   $=72(.0) \checkmark$ $x=\frac{72(.0)}{18(.0)}=4$	5	FULL ANNOTATIONS MUST BE USED $\qquad$   At least $\mathbf{3}$ SF required throughout   Alternative approach for final 3 marks based on mass: $\begin{aligned} & \mathrm{mass} \mathrm{Cu}(\mathrm{HCOO})_{2}=9.87 \times 10^{-3} \\ & \times 153.5=1.515 \mathrm{~g} \\ & n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{2.226-1.515}{18(.0)}=\frac{0.711}{18(.0)}=0 . \\ & x=\frac{0.0395}{9.87 \times 10^{-3}}=4 \end{aligned}$

### 5.3.1 Transition Elements

|  |
| :---: | :--- | :--- | :--- |

### 5.3.1 Transition Elements

			Examiner's Comments   This question assessed complex ions of transition elements. Although a relatively gentle introduction to the paper, the question discriminated well.   This question required knowledge and understanding of complex ions formed in ligand substitution reactions of aqueous $\mathrm{Cu}^{2+}$ ions. Well-prepared candidates usually collected the three marks with comparative ease. For the complex ions, common errors included $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ instead of $\left.\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ and incorrect charges (e.g. $\mathrm{CuCl}_{4}^{-}$). The observations were well known although green, rather than yellow, was often seen for $\mathrm{CuCl}_{4}{ }^{2-}$.
b	Donates two electron pairs to a metal ion / metal / $\mathrm{Cu}^{2+}$   AND   forms two coordinate bonds to a metal ion / metal / $\mathrm{Cu}^{2+} \checkmark$	1	ALLOW lone pairs for electron pairs   ALLOW molecule / atom / ion / substance for 'ligand' ALLOW dative (covalent) bonds for coordinate bonds   ALLOW transition element for metal   Two is needed once only e.g. Donates two electron pairs to form coordinate bonds to a metal ion / metal / Cu ${ }^{2+}$   Donates electron pairs to form two coordinate bonds to a metal ion / metal / Cu ${ }^{2+}$   DO NOT ALLOW donates two electron pairs to form one / a coordinate bond   Examiner's Comments   This question assessed complex ions of transition elements. Although a relatively gentle introduction to the paper, the question discriminated well.

### 5.3.1 Transition Elements



### 5.3.1 Transition Elements

(

### 5.3.1 Transition Elements

				number of each atom also proved problematic, especially the O atoms.
		Total	9	
$\begin{aligned} & 2 \\ & 0 \end{aligned}$	a	$\mathrm{Fe}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} \checkmark$		ALLOW 4s before 3d, ie $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$   ALLOW $1 \mathrm{~s}^{2}$ written after answer prompt (ie $1 \mathrm{~s}^{2}$ twice)
		$\mathrm{Br}^{-}: 1 \mathrm{~s}^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} \checkmark$	2	ALLOW upper case $D$, etc and subscripts, e.g. ......4S23D   ALLOW for $\mathrm{Fe}^{2+} \ldots \ldots . . . .4 \mathrm{~s}^{0}$   DO NOT ALLOW [Ar] as   shorthand for $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$   Look carefully at $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$   - there may be a mistake   Examiner's Comments   Few candidates produced two incorrect electron configurations but there were many mistakes seen for either species. For $\mathrm{Fe}^{2+}$, the commonest error was for loss of electrons from the 3d rather than 4 s sub-shell of an Fe atom. For a $\mathrm{Br}^{-}$ion, it was common to see the electron configuration of a Br atom. Surprisingly a common error was to see $4 p^{4}$ rather than $4 p^{6}$ from loss rather than gain of an electron. Only just over half the candidates showed two correct configurations so clearly more care is needed when answering.
		With $\mathrm{Cl}_{2}$ AND $\mathrm{Br}_{2}$ AND $\mathrm{I}_{2}$   products are $\mathrm{Fe}^{2+}$ (AND halide ion)   $\mathrm{FeCl}_{2}$ AND $\mathrm{FeBr}_{2}$ AND $\mathrm{Fel}_{2} \checkmark$   OR   Evidence that two electrode potentials have been compared for at least   ONE reaction, $\checkmark$   e.g. $\mathrm{Fe}-0.44$ AND $\mathrm{Cl}_{2}+1.36$   e.g. Iron has more / most negative electrode potential   With $\mathrm{Cl}_{2}$ AND $\mathrm{Br}_{2}$,   products are $\mathrm{Fe}^{3+}$ (AND halide ion)   $\mathrm{FeCl}_{3}$ AND $\mathrm{FeBr}_{3}$ ?	3	FULL ANNOTATIONS NEEDED   ALLOW products within equations (even if equations are not balanced)   IF stated, IGNORE reactants   ALLOW response in terms of positive 'cell reactions', $\begin{aligned} & \mathrm{e} . \mathrm{g} \mathrm{Fe}+\mathrm{Cl}_{2} \rightarrow \mathrm{Fe}^{2+}+2 \mathrm{Cl}^{-} \mathrm{E}= \\ & (+) 1.80 \mathrm{~V} \end{aligned}$   IGNORE comments about reducing and oxidising agents and electrons

### 5.3.1 Transition Elements

(

### 5.3.1 Transition Elements

				by incorrect balancing of equations or careless positioning of numbers. This part discriminated extremely well. For the redox equation, common mistakes were omission of species (such as $\mathrm{H}^{+}$) failure to balance the redox reaction by charge (with the ' 3 ' balancing numbers for $\mathrm{Fe}^{2+}$ and $\mathrm{Fe}^{3+}$ being omitted) or inclusion of $\mathrm{e}^{-}$on one side of the equation.   For the ligand substitution equation, $\mathrm{H}_{2} \mathrm{O}$ was sometimes omitted on the right-hand side and careless positioning of numbers, such as $\left(\mathrm{H}_{2} \mathrm{O}_{5}\right)$ was sometimes seen. Candidates are recommended to check all species very carefully for any such slips.
		Total	8	
$\begin{aligned} & 2 \\ & 1 \end{aligned}$	a i	Donates two electron pairs (to a metal ion)   AND   forms two coordinate bonds (to a metal ion) $\checkmark$   NOTE: Metal ion not required as $\mathrm{Ni}^{3+}$ is in the question	1	ALLOW lone pairs for electron pairs   ALLOW dative (covalent) bonds for coordinate bonds   TWO is only needed once, e.g. Donates two electron pairs to form coordinate bonds Donates electron pairs to form two coordinate bonds   Examiner's Comments   Most candidates obtained this mark in terms of donation by two electron pairs to form two coordinate or dative covalent bonds. Some candidates omitted donation or formed one coordinate bond only.
	i	$\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{~V}$	1	ALLOW in any order IGNORE structure   Examiner's Comments   Most candidates were able to identify the three bidentate ligands in $\mathrm{C}_{9} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{Ni}^{3+}$ and the

### 5.3.1 Transition Elements

$|$| ( |
| :--- |

### 5.3.1 Transition Elements

				Other orientations possible but all follow same principle with 2nd structure being a mirror image of the first   Examiner's Comments   In past sessions, candidates have been required to draw out stereoisomers and this question proved to be much more straightforward. Only the very weakest candidates were unable to complete the diagrams to provide two mirror image forms.
	b	Quality of written communication   Observation must be linked to the correct reaction   REACTIONS OF AQUEOUS $\mathrm{Cu}^{2+}$   REACTION OF Cu ${ }^{2+}$ with $\mathrm{NaOH}(\mathrm{aq})$   Correct balanced equation $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \checkmark$   state symbols not required   Observation   blue precipitate / solid $\checkmark$	2	FULL ANNOTATIONS MUST BE USED THROUGHOUT ALLOW some reactions for $\mathrm{Cu}^{2+}$ and some for $\mathrm{Co}^{2+}$ ALLOW equilibrium signs in all equations IGNORE any incorrect initial colours IGNORE state symbols IGNORE an incorrect formula for an observation $\qquad$ $\qquad$ $\begin{aligned} & \mathrm{ALLOW}\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow \\ & \mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$   ALLOW full or 'hybrid' equations, e.g. $\mathrm{Cu}^{2+}+2 \mathrm{NaOH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+$ $2 \mathrm{Na}^{+}$ $\begin{gathered} {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow} \\ \mathrm{Cu}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{CuSO}_{4}+2 \mathrm{NaOH}_{2} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+ \\ \mathrm{Na}_{2} \mathrm{SO}_{4} \end{gathered}$   ALLOW any shade of blue
		REACTION OF Co ${ }^{2+}$ WITH excess $\mathrm{NH}_{3}(\mathrm{aq})$   Correct balanced equation $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O} \checkmark$   Observation   deep / dark blue (solution) $\checkmark$	2	IGNORE initial precipitation of $\mathrm{Cu}(\mathrm{OH})_{2}$   IGNORE $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$   ALLOW royal blue, ultramarine blue or any blue colour that is clearly darker than for $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$   DO NOT ALLOW deep blue precipitate for observation

### 5.3.1 Transition Elements

## REACTION OF Cu ${ }^{2+}$ WITH $\mathrm{HCl}(\mathrm{aq})$

## Correct balanced equation

$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$
Observation yellow (solution) $\checkmark$

Quality of written communication
Observation must be linked to the correct reaction

REACTIONS OF AQUEOUS $\mathrm{Co}^{2+}$

REACTION OF $\mathrm{Co}^{2+}$ with $\mathrm{NaOH}(\mathrm{aq})$

Correct balanced equation
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Co}(\mathrm{OH})_{2}(\mathrm{~s}) \checkmark$
state symbols not required

## Observation

blue precipitate / solid $\checkmark$

## REACTION OF Co ${ }^{2+}$ WITH excess $\mathrm{NH}_{3}(\mathrm{aq})$

## Correct balanced equation

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$

## Observation

brown / yellow (solution) $\checkmark$

IGNORE mention of different concentrations of HCl

ALLOW CuCl4 ${ }^{2-}$ i.e. no brackets OR Cu(Cl) $4^{2-}$
ALLOW $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{HCl} \rightarrow$ $\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}^{+}$
IGNORE Cu ${ }^{2+}+4 \mathrm{Cl}^{-} \rightarrow \mathrm{CuCl}_{4}{ }^{2-}$

ALLOW green-yellow OR yellow-green

DO NOT ALLOW yellow
precipitate for observation

FULL ANNOTATIONS MUST
BE USED THROUGHOUT
ALLOW some reactions for $\mathrm{Cu}^{2+}$ and some for $\mathrm{Co}^{2+}$
ALLOW equilibrium signs in all equations
IGNORE any incorrect initial colours
IGNORE state symbols IGNORE an incorrect formula for an observation

ALLOW $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow$ $\mathrm{Co}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+2 \mathrm{H}_{2} \mathrm{O}$

ALLOW full or 'hybrid' equations, e.g. $\mathrm{Co}^{2+}+2 \mathrm{NaOH} \rightarrow \mathrm{Co}(\mathrm{OH})_{2}+$ $2 \mathrm{Na}^{+}$
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow$ $\mathrm{Co}(\mathrm{OH})_{2}+6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{CoSO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Co}(\mathrm{OH})_{2}+$
$\mathrm{Na}_{2} \mathrm{SO}_{4}$

ALLOW any shade of blue IGNORE changes in colour over time

IGNORE initial precipitation of $\mathrm{Co}(\mathrm{OH})_{2}$

ALLOW any shade of brown or yellow

DO NOT ALLOW brown / yellow precipitate for observation

IGNORE mention of different concentrations of HCl

### 5.3.1 Transition Elements



## Observation

blue (solution $\checkmark$

ALLOW CoCl4 ${ }^{2-}$ i.e. no brackets OR $\mathrm{Co}(\mathrm{Cl})_{4}{ }^{2-}$
ALLOW $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{HCl} \rightarrow$
$\left[\mathrm{CoCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}^{+}$
IGNORE Co ${ }^{2+}+4 \mathrm{Cl}^{-} \rightarrow \mathrm{CoCl}_{4}^{2-}$

ALLOW any shades of blue DO NOT ALLOW blue precipitate for observation

## Examiner's Comments

This question assessed
knowledge and understanding of precipitation and ligand substitution reactions of transition metal ions. The question discriminated extremely well between well-prepared and poorly-prepared candidates. The well-prepared often collected the full six marks with comparative ease. However, marks were sometimes squandered by incorrect balancing of equations (e.g. formation of $2 \mathrm{H}_{2} \mathrm{O}$ rather than $4 \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{NH}_{3}$ ), careless positioning of numbers (such as $\mathrm{Cu}\left(\mathrm{OH}_{2}\right)$ and $\left.\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]^{2+}\right)$ or omission of charges (such as $\left.\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right)$. The observations were very well known with yellow, rather than green, usually seen for $\mathrm{CuCl}_{4}{ }^{2-}$. It was sad to see the responses of poorly-prepared candidates that had clearly been invented in the exam. Often these scored no marks or perhaps one for remembering that copper(II) hydroxide is a blue precipitate. Cobalt tended to be the choice of weaker candidates.
Some candidates mixed and matched between copper and cobalt and this approach was fully credited.

For precipitation, the specification allows a simple equation in terms of $\mathrm{Cu}^{2+}(\mathrm{aq})$ rather than complex ions. It was relatively common to see an equation for the precipitation reaction of $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ with hydroxide ions forming

### 5.3.1 Transition Elements

				$\left[\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ and this approach gained full credit if the equations were correctly balanced. The two equations for ligand substitution required complex ions throughout. It should be noted that the specification requires the complex ion $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ and the simpler representation of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ was not credited. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ was a common incorrect complex ion seen.
		Total	12	
2	a	$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{Cl}_{2}+10 \mathrm{OH}^{-} \rightarrow 2 \mathrm{FeO}_{4}^{2-}+6 \mathrm{Cl}^{-}+5 \mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$   First mark for all 6 species   Second mark for balancing	2	ALLOW multiples   ALLOW oxidation half equation for two marks $\begin{aligned} & \mathrm{Fe}_{2} \mathrm{O}_{3}+10 \mathrm{OH}^{-} \rightarrow 2 \mathrm{FeO}_{4}^{2-}+ \\ & 5 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{e}^{-} \end{aligned}$   Correct species would obtain 1 mark   - question: equation for oxidation   ALLOW variants forming $\mathrm{H}^{+}$for   1 mark, e.g: $\begin{aligned} & \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{Cl}_{2}+5 \mathrm{OH}^{-} \rightarrow 2 \mathrm{FeO}_{4}^{2-} \\ & +6 \mathrm{Cl}^{-}+5 \mathrm{H}^{+} \\ & \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{Cl}_{2}+5 \mathrm{OH}^{-} \rightarrow 2 \mathrm{FeO}_{4}^{2-} \\ & +5 \mathrm{HCl}^{2-} \mathrm{Cl}^{-} \end{aligned}$   Examiner's Comments   The information needed to write the equation was largely within the information provided for step   1. In step 1, candidates were provided with three reactants and two of the products. They were also told that the reaction was carried out using an excess of hydroxide ions, so any potential $\mathrm{H}^{+}$ions produced would be neutralised to water. Only the very best candidates were able to interpret this information to score both marks for the correct equation. Many attempts seen did not start with iron(III) oxide. When arriving at a complete equation, candidates are recommended to check the overall charge on either side. This must balance, a feature not seen in the majority of

### 5.3.1 Transition Elements

			responses. One mark was available for an equation with all species correct, including water as the third product, or a 'correct' equation but with $\mathrm{H}^{+}$produced.
b	$\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{FeO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaFeO}_{4}(\mathrm{~s}) \checkmark$	1	Balanced ionic equation AND state symbols required   DO NOT ALLOW +2 or -2 for ionic charges   Examiner's Comments   As with 8(a), the relevant information was mostly included within the referenced part: step 2. The responses were very disappointing as the required equation is very similar to a simple precipitation reaction between silver and halide ions. The requirement for state symbols was clearly stated but often omitted from otherwise correct equations.
c	Reason can ONLY be correct from correct reducing agent $\qquad$   reducing agent: $\mathrm{I}^{-}$OR KI $\checkmark$   I' $^{-}$adds / donates / loses electrons   AND   to $\mathrm{FeO}_{4}{ }^{2-} \mathrm{OR}$ to $\mathrm{BaFeO}_{4} \mathrm{OR}$ to $\mathrm{Fe}(\mathrm{VI})$ or to $\mathrm{Fe}(+6) \checkmark$   ALLOW Fe(6+) OR Fe ${ }^{6+}$	2	IGNORE $\mathrm{H}^{+}$OR acidified ALLOW iodide / potassium iodide but DO NOT ALLOW iodine   ALLOW I- loses electrons AND to form $\mathrm{I}_{2}$   ALLOW Fe(6+) OR Fe ${ }^{6+}$   Examiner's Comments   The majority of candidates identified iodide ions or potassium iodide as the oxidising agent. lodine was often recognised as the product but the explanation was usually in terms of oxidation number despite the question asking for electrons very much a case of reading the question. Precise language was also required as iodine and iodide are rather different, especially as iodine is the product. The best responses

### 5.3.1 Transition Elements



### 5.3.1 Transition Elements

				hardest mark was the step from the initial amount of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ to the amount of $\mathrm{BaFeO}_{4}$.   Answer: 51.8\%
	e	gas: $\mathrm{O}_{2} \checkmark$   precipitate: $\mathrm{Fe}(\mathrm{OH})_{3} \checkmark$   equation: $2 \mathrm{FeO}_{4}{ }^{2-}+5 \mathrm{H}_{2} \mathrm{O} \quad \rightarrow 1 \frac{1}{2} \mathrm{O}_{2}+2 \mathrm{Fe}(\mathrm{OH})_{3}+4 \mathrm{OH}^{-}$   $\mathrm{OR} 2 \mathrm{FeO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}^{+} \rightarrow 1 \frac{1}{2} \mathrm{O}_{2}+2 \mathrm{Fe}(\mathrm{OH})_{3} \mathrm{~V}$	3	DO NOT ALLOW names   IGNORE a balancing number shown before a formula   ALLOW $\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right) 3$   ALLOW multiples   ALLOW $2 \mathrm{FeO}_{4}{ }^{2-}+11 \mathrm{H}_{2} \mathrm{O} \rightarrow 1 \frac{1}{2} \mathrm{O}_{2}+2 \mathrm{Fe}(\mathrm{OH})$   Examiner's Comments   This part required candidates to construct an equation for an unfamiliar reaction. Candidates were reasonably competent in identifying the gas as $\mathrm{O}_{2}$ and precipitate as $\mathrm{Fe}(\mathrm{OH})_{3}$. Unfortunately, some responded with 'oxygen' despite the formulae being asked for in the question.   The correct equation proved to be the hardest mark on the paper, being seen extremely rarely. As with the equation in 8(a), often the overall charge didn't balance on either side of the equation, a consideration that would have led to many more correct responses.
		Total	12	
	a	(Transition element) has an ion with an incomplete / partiallyfilled d sub-   shell / d-orbital $\checkmark$   Scandium / Sc and zinc / Zn are not transition elements $\checkmark$   Electron configurations of ions   $\mathrm{Sc}^{3+}$ AND $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \checkmark$	6	FULL ANNOTATIONS MUST BE USED   ALLOW capital 'D' within definition DO NOT ALLOW d shell   ALLOW if ONLY Sc and Zn are used to illustrate d block elements that are NOT transition elements   This can be from anywhere in the overall response in terms of

### 5.3.1 Transition Elements

$Z^{2+}$ AND $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} \checkmark$
$\mathrm{Sc}^{3+}$ AND d sub-shell empty / d orbital(s) empty $\checkmark$
Note: $\mathrm{Sc}^{3+}$ must be the ONLY scandium ion shown for this mark
$\mathrm{Zn}^{2+}$ AND d sub-shell full / ALL d-orbitals full $\checkmark$
Note: $\mathrm{Zn}^{2+}$ must be the ONLY zinc ion shown for this mark
$\mathrm{Sc}, \mathrm{Sc}^{3+}, \mathrm{Zn}, \mathrm{Zn}^{2+}$ OR incorrect charges, i.e. only $\mathrm{Sc}^{+}, \mathrm{Sc}^{2+}, \mathrm{Zn}^{+}$

In electron configurations, IF subscripts OR caps used, DO NOT ALLOW when first seen but credit subsequently

ALLOW 4s ${ }^{0}$ in electron configurations
IGNORE [Ar]
IGNORE electron configurations for other Sc and Zn ions

ALLOW for $\mathrm{Sc}^{3+}$ : Sc forms a 3+ ion; ALLOW Sc ${ }^{+3}$
ALLOW for $\mathrm{Zn}^{2+}$ : Zn forms a $\mathbf{2 +}^{+}$ ion; ALLOW $\mathrm{Zn}^{+2}$

ALLOW Sc ${ }^{3+}$ has no d sub-shell DO NOT ALLOW ' $d$ sub-shell is incomplete' (in definition)

DO NOT ALLOW 'd sub-shell is incomplete' (in definition)

## Examiner's Comments

The position of scandium as zinc and d-block elements that are not transition elements has been rarely assessed and some candidates had clearly not learnt this part of the specification. The examiners required a standard definition of a transition elements and an explanation of why scandium and zinc do not comply with this definition in terms of the electron configurations of the $\mathrm{Sc}^{3+}$ and $\mathrm{Zn}^{2+}$ ions and the empty and full $d$ sub-shell of these two ions respectively. The wellprepared easily collected all 6 marks but it was sad to see marks wasted by responses that were clearly being made up during the examination (often in terms of any of the d-block elements in Period 4). Reasons for not obtaining marks included a definition in terms of elements

### 5.3.1 Transition Elements


### 5.3.1 Transition Elements



### 5.3.1 Transition Elements


### 5.3.1 Transition Elements

		(When required,) $\mathrm{O}_{2}$ substituted $\mathbf{O R} \mathrm{O}_{2}$ released $\checkmark$ $\mathrm{Fe}^{2+}$ not required for 2nd marking point (e.g. IGNORE Fe)		$\mathrm{O}_{2}$ is around $\mathrm{Fe}^{2+}$   ALLOW bond to $\mathrm{O}_{2}$ breaks when   $\mathrm{O}_{2}$ required   OR $\mathrm{H}_{2} \mathrm{O}$ replaces $\mathrm{O}_{2}$ OR vice versa   ALLOW CO ${ }_{2}$ replaces $\mathrm{O}_{2}$ OR vice versa   ALLOW $\mathrm{O}_{2}$ bonds / binds reversibly   Examiner's Comments   The majority of candidates secured one of the available two marks for describing ligand substitution between $\mathrm{O}_{2}$ and either $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{CO}_{2}$. The second mark required a specific reference to the role of $\mathrm{Fe}^{2+}$; this was often omitted with responses instead predominately discussing the role of haem or iron.
	i	$\left(K_{\text {stab }}=\right) \frac{\left[\mathrm{HbO}_{2}(\mathrm{aq})\right]}{[\mathrm{Hb}(\mathrm{aq})]\left[\mathrm{O}_{2}(\mathrm{aq})\right]}$   ALL Square brackets essential	1	ALLOW expression without state symbols (given in question)   Examiner's Comments   As with 3(a) the $K_{\text {stab }}$ expression was shown correctly by almost all candidates, the only mistakes being the very occasional inverted expression or use of " + " within the denominator.
	i	Both marks require a comparison   Stability constant / $K_{\text {stab }}$ value with CO is greater (than with complex in $\mathrm{O}_{2}$ ) $\checkmark$   (Coordinate) bond with CO is stronger (than $\mathrm{O}_{2}$ )   OR CO binds more strongly $\checkmark$	2	IGNORE (complex with) CO is more stable   ALLOW bond with CO is less likely to break (than $\mathrm{O}_{2}$ )   OR CO is a stronger ligand (than $\mathrm{O}_{2}$ )   OR CO has greater affinity for ion / metal / haemoglobin (than $\mathrm{O}_{2}$ )   ALLOW CO bond formation is irreversible   OR CO is not able to break away   IGNORE CO bonds more easily

### 5.3.1 Transition Elements


### 5.3.1 Transition Elements

		orange solution: $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$   AND green solution (anywhere) $\mathrm{Cr}^{3+} \mathrm{OR}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \checkmark$   $2 \mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+3 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq}) \mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{e}^{-}$all cancelled $\checkmark \checkmark$	3	State symbols are not required in this part   IGNORE, even if incorrect   IGNORE Cr(VI)   The question asks for species   ALLOW 1 mark for $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O} / \mathrm{e}^{-}$ not cancelled, e.g. $2 \mathrm{Cr}^{3+}(\mathrm{aq})+$ $\begin{aligned} & 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+3 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \\ & \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{qq})+ \\ & 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \checkmark \end{aligned}$
		Total	11	
	a	$\begin{aligned} & \text { Cr: }\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1} \\ & \text { Cr }^{3+}:\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{3} \end{aligned}$	2	ALLOW 4s before 3d, ie $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{5}$   ALLOW $1 \mathrm{~s}^{2}$ written after answer prompt (ie $1 \mathrm{~s}^{2}$ twice)   ALLOW upper case D, etc and subscripts, e.g. $\qquad$ $.4 S_{1} 3 D_{5}$   ALLOW for $\mathrm{Cr}^{3+}$ $\qquad$ $.4 s^{0}$ DO NOT ALLOW [Ar] as shorthand for $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$   Look carefully at $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ - there may be a mistake.
	b	Formula of complex ion J   Structures show correct ligands ( $4 \mathrm{NH}_{3}$ AND 2 Cl )   AND 1+ charge (on at least one structure)   cis   NOTE:   For each structure, bonding from Co must be to $\mathbf{N}$ of $\mathrm{NH}_{3}$   cis and trans labels required for both structure marks.   If structures are correct but labels are wrong way round or omitted, award 1 out of the 2 stereoisomer marks.	3	FULL ANNOTATIONS MUST BE USED   For two stereoisomer marks, IGNORE charges (anywhere) Charge already credited within the 1st mark.   Square brackets NOT required   Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge':   For bond into paper, ALLOW:

### 5.3.1 Transition Elements

		TAKE CARE: structures may be in different orientations.		ALLOW following geometry throughout:
c		A: $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$   B: $\mathrm{Mnl}_{2}$   State symbols not required in equations (within observations).   C: $\mathrm{Cr}^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}$   D: $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+6 \mathrm{H}_{2} \mathrm{O}$   $\mathrm{E}: \mathrm{Mn}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Mn}(\mathrm{OH})_{2}$   $\mathrm{F}: \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4}$   G: $\mathrm{Ag}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{AgI}$	7	Formulae required in question IGNORE incorrect names   IGNORE incorrect state symbols $\begin{aligned} & \mathrm{ALLOW}\left[\mathrm{Cr}^{\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{OH}^{-} \rightarrow}\right. \\ & \mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O} \end{aligned}$   ALLOW $\mathrm{Cr}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}+6 \mathrm{NH}_{3}$ $\rightarrow\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right) 6\right]^{3+}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{OH}^{-}$   ALLOW $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{OH}^{-} \rightarrow$ $\mathrm{Mn}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+2 \mathrm{H}_{2} \mathrm{O}$
		removes / reacts with carbonate / $\mathrm{CO}_{3}{ }^{2-}$   AND   carbonate forms a (white) precipitate	1	Both statements required for the mark   Note: 2nd statement can be for Test $2\left(\mathrm{Ba}^{2+}\right)$   OR Test $3\left(\mathrm{Ag}^{+}\right)$
	$i$	Test 2: no difference   Test 3 gives a white precipitate by reaction with $\mathrm{Cl}^{-}$   A: white precipitate   AND   B: white / yellow ppt OR cream ppt OR paler yellow ppt	3	
	$\|\mathrm{v}\|$	Add concentrated ammonia / $\mathrm{NH}_{3}$   AND yellow precipitate does not dissolve	1	Concentrated essential for $\mathrm{NH}_{3}$
		Total	17	

